J: L R |

NACA TN 2455/ %708

o )

|
|
|

R e

A

NATIONAL ADVISORY COMMITTEE

FOR AERONAUTICS .

TECHNICAL NOTE 2455

A METHOD OF DESIGNING TURBOMACHINE BLADES
WITH A DESIRABLE THICKNESS DISTRIBUTION FOR
COMPRESSIBLE FLOW ALONG AN ARBITRARY
STREAM FILAMENT OF REVOLUTION
By Chung-Hua Wu and Curtis A. Brown

Lewis Flight Propulsion Laboratory
Cleveland, Ohio

Washington
September 1951

N ‘84vy AHvHET HO3L



¢2323

TECH LIBRARY KAFB, NM

(TR

NATTONAT, ADVISORY COMMITTEE FCR AERONAUTICS O0b3E06

TECHNICAL NOTE 2455

A METHOD OF DESIGNING TURBOMACHINE BLADES WITH A DESIRABLE
THICKNESS DISTRIBUTION FOR COMPRESSIBLE FLOW ALONG AN
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By Chung-Hua Wu and Curtis A. Brown

SUMMARY

A rapid method for designing turbomachine blades of a given turning
and a desirable blade-thickness distribution for a compressible non-
viscous fluid flow along an arbitrary stream filament of revolution is
presented. The method utilizes the guiding effects of the blade shape
on the mean streamline shape and of the blade thickness on the specific
mass flow along the mean streamline. After the flow on the mean stream-
line is determined, the extension of the solution from the mean stream-
line to the blade surfaces is accomplished by the use of a power series.
A number of blade profiles are obtainable for the total mass-flow
requirement, and one is chosen for the best velocity distribution on
the blade. The results obtained in the solution can be used for a
direct check on the accuracy of series approximation and, also, for
the more accurate determination of the velocity distribution along the
leading end trailing edges of the blade.

The method is illustrated with the design of several turbine cas-
cades of highly cambered thick blades. The determination of the sheape
of the blades and the compresgible flow past the blades was carried out
by hand computation in 16 hours. One solution obtained by using threq
terms in the power series compared very well with an available direct
solution and the blade circulation checks closely the specified turning

angle.

Because the surface of revolution, on which the blades are located,
is completely arbitrary, the method can be applied to axial-flow,
radial-flow, and mixed-flow turbomachines. The variation in the normal
distance between the stream surfaces of revolution can be taken into
account, thus incorporating into the design the principal effect of
three-dimensional flow. The method is readily applied to the design of
channels on a plane and on a general surface of revolution.
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INTRODUCTION

The increasing use of compressors and turbines in aircraft power
plants during the past 10 years has led to considerable research in the
direct and inverse problems of two-dimensional potential flow past an
infinite cascade of airfoils. In the inverse problem, the design of
blades is often directed at control of the pressure or velocity distri-
bution on the blade. Most of the methods are derived for axial-type
turbomachines, in which the flow is assumed to take place on cylindrical
surfaces (methods for incompressible and compressible flow are discussed
in references 1 to 7 and 8 to 11, respectively). Methods for designing
blades in a radial plane are given in references 12 and 10.

In current axial- and radial-flow turbomachines, the flow surfaces
are usually of a more general shape than either cylindrical or radial.
Furthermore, the normal distance between adjacent flow surfaces varies
along the flow path. A method was therefore developed at the Lewis
laboratory for the design of blades for compressible flow along an
arbitrary stream filement of revolution. Instead of the velocity
distribution on the blede being the required result, the blade design
is aimed at & desirable blade-thickness distribution required with
respect to blade strength and Mach number in general end also the cool-
ant passage requirement in the case of cooled turbine blades. The com-
putation involved in this method is relatively simple and short, and
the usual assumption of a linear pressure-volume relation for compres-
sible flow is not required.

For clarity eand simplicity the method will first be given for
compressible flow on a plane or a cylindrical surface and will be
illustrated by a few examples. The method will then be given for the
general case of compressible flow along an arbitrary stream filament of

revolution.

SYMBOLS
The following symbols are used in this report:

B differentiation coefficient

H  total enthalpy, h + 3 v2

\

H; relative total enthelpy, h + % Wz

h static enthalpy

€232
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1 1. 2.2
1 h +-§'W2.- > 9 T
L blade length projected on turbomachine axis

1, orthogonal coordinates on mean surface of revolution

M mass flow
P pitch or spacing
P static pressure of gas
r radial distance from axis of turbomachine
5 streamline
t blade thickness in circ¢umferential direction
) absolute velocity of gas
W velocity of gas relative to blade
b distance in direction of pitch for plane flow and equal to r@
for flow on cylindrical surface
Z distance along axis of turbomachine
B flow angle on stream surface, tan~t g—f or tan~l :I_I_;p
p - density of gas
c angle between tangent to meridional curve and axis, tan~1 :;_r
z
T Jormal thickness of stream filament of revolution
T ratio of specific. heats
stream function
w angular velocity of blade
Superscript:

*  dimensionless velue
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Subscripts:
e exit
i inlet

1, meridionsl and circumferential components

m mean streamline

jo) pressure surface of blade
5 suction surface of blade
T total or stagnation state
¥ y-camponent

z z-component

DESIGNING BLADES FOR COMPRESSIBLE FLOW IN PLANE
OR ON CYLINDRICAIL, SURFACE
General Description of Method

In a recent investigation of compressible flow through a typical
cascade of turbine blades (reference 13), the following results were
obtained: '

{1) The shape of the mean streamline follows approximetely that of
the mean channel l1ine of the cascade and has a lower curvature.

(2) The variation of the ratio of the specific mass flow on the
mean streamline to its inlet value follows the trend in the veriation
of the ratio of pitch to channel width (inside the channel the ratio of
the specific mass flow is e&bout 4 percent greater than the ratio of
pitch to channel width).

(3) The variation in fluid properties across the channel can be
represented by a second-degree function for engineering accuracy.

These results were used herein to develop a rapid method for
designing cascade blades for either compressible or incompressible flow.

This method of blade design starts with the calculation of the com-
pressible flow on the mean streamline. With the flow angle upstream

2223
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and downstream of the blade determined by the velocity diagram and the
pitch and the axial length of the blade given, a particular mean stream-
line shape may be sgketched by the designer. The designer may use the
shape of the mean streamline itself as a parameter of the cascade or
may specify the mean streamline shape according to figure 17 or refer-
ence 13 (or even better according to any available relation of a simi-
lar blading) to lead to a certain blade camber line. (If only a number
of points of this streamline are specified, it is important that the
values given are numerically smooth). In addition to the mean streamline
shape the designer further specifies at a finite number of points along
the mean streamline (such as Zy - - - Z1g in fig. 1), the ratio of

specific mass flow on the mean streamline to inlet value. The values
of the specific mass flow on the mean streamline are determined by the
blade-thickness distribution which is desirable from the consideration
of blade stress and Mach number in general, and the consideration of
the additional requirement of coolant passage in the case of cooled
turbine blades, and by a relation between blade-thickness distribution
and specific mass flow on the mean streamline, such as shown in fig-
ure 19 of reference 13.

With these specified values, the velocity components and the density
are very easily determined at the specified points on the mean stream-
line. The variation of velocity components and density in the pitch
direction are then obtained by using power series in that direction.
The derivatives in the series are determined from the f£fluid state on
the mean streamline by the use of equations of continuity and motion
and the density-velocity relation for isentropic flow. A number of
blade profiles and their velocity distributions are obtained by inter-
preting the starting mean streamline as dividing the inlet mass flow
into two slightly different amounts in the channel. The velocity dis-
tributions on the blades are compared and the best one is chosen. If
the blade shape, the thickness distribution, or the velocity distri-
bution around the blade obtained requires some modification, the
values specified for the mean streamline should be modified and the
process repeated. Because of the relatively short computation involved
(in the illustrative examples of turbine blades, only 16 hours were
required for the compressible solution by using the first three terms
in the series and 6 to 10 stations inside the channel), modifications
of the solution for more desirdble blade thickness or velocity distri-
bution is practical. Families of blade elements can be built up very
quickly this way for any particular application.

Basgic Relations

The steady two-dimensional isentropic flow of & nonviscous fluid
in a plane or on a cylindrical surface is governed by the following
equations of continuity and irrotational motion, and the isentropic
pressure-density relation:
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o
oW OW.
gy—z -5F=0 (2)
D= Kp' | (3)

In these equations, the z coordinate is chosen along the machine axis
and the y coordinate is chosen along the pitch direction (y = r@ in
the case of cylindrical flow with r equal to a constant).

Consider first the gas flow along & streamline somewhere in the

midpart of the channel formed by two neighboring blades, such as &b
in figure 1. The coordinates of the streamline and their differentials

are related, respectively, by the following two equations:
S(z,y) =0 (4)

g% dz + g% dy =0 (5)

When the variation of the fluid state slong the streamline is considered,
any quantity q on the streamline is a function of 2z only, that is,

a = afz,y(2)] (6)

The total derivative of q with respect to 2z is

2-g5E Q
But
oS
%=-%=%=tws (8)
oy

9g ()

Vhen equation (9) is used, the continuity and irrotationality relations
can be written as

€222
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Aewy) g Ao¥z) olgily)

Tl (20)
and
aw, oW OW.
J Z y _
@z "5y "B =0 (11)

The variation of density throughout the flow region can be most
conveniently expressed in terms of its inlet value through the use of
equation (3) as follows:

L

-1

* P pT:i p pT:i W2 Y

p¥*¥= — = = 1~ o (12)
ps Py pT’i Py B,

A tabulated general relation of p/pT ; in equal intervals of WZ/HW

can first be calculated, from which either a table for p/p in equal

intervals of Wz or a graph can be.easily constructed for each indi-
vidual case and used for the evaluation of density from the velocity.

Along the chosen (mean) streamline, where the slope is known and
pWZ is given at a number of stations, the density at these stations can

be obtained as follows: Rewrite equation (12) as

1
B 2 ‘Y-l
W
1- —E—i—— (p*W * sec B)
2E_o*?
p*= £ - = = (12a)
Py Wy
1 - ——
_ 2By |
or
*2 2
H p W
2 Al (v-1) i
(p*Wz* sec B) = 2 1 - (p% 1- == (12b)
W, 12 2H,
where
W
Wt = o2
pA Wz,{
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Either equation (lZa) 1s used to prepare a table of p)* for equal inter-
vals of (p*W,* sec B) by an iterative process, or equation (12b) is
used to compute p*WZ* sec B for a mumber of values p*, which are
then plotted as a graph. After densities have been obtained from either
a table or graph, the velocity components on the chosen (mean) stream-
line are readily computed. The fluid state is then extended out in the
pitch direction by the equetions given in the next section (compare with
references 14 and 15).

Variation of Fluid State in Pitch Direction

Equations (8), (10), (11), erd {12) directly give the first-order
pexrtial derivatives of Wz, W&, and p with respect to y in terms

of the known quantities on the chosen (mean) streamline as follows:

oW aw a(pw
M aw a(ew )
J _ [‘ba.n g '&Z—y: - %% COSz B (14)
OW oW
190 1
pe- wz)("Z'ésf'z*Wv#’) -
(r-1) (Hﬁ-- 5

The second-order partial derivatives of Wi, W&, and p with

respect to ¥y can be obtained as follows: Differentiating the con-
tinuity equation (1) with respect to y results in

3(pw,)  3%(oiy)
dz oy + ayz
Equetion (16) can be written through the use of relation (9) as

3% (oW,,) 32 (pW,) 3(oW,)
__;_‘;zl__tanﬁ_?zzﬁ_+%_6yi=o

=0 (16)

(17)

which is expanded to obtain

2 2
oW J3p W oW 3o W o(pW,)

y p Y _ ~ 'z p "z 4a z’ _
pay2+23§;6§— <pay2+2 >tanB+ 0

(18)

2223



B N

A

NACA TN 2455 9

From equation (10)

OW oW 1 a(pW,)
SR - T (19)

Differentiating the irrotationality equation (2) with respect to y and
using equation (9) yield

o%, g oy S
2 azdy - ten B 572 (20)

oy
(21)

After this equation is evaluated, the second partial derivative of W
with respect to y 1is obtained by using equation (20):

B o oW, azwy o)
=2 - ten B —F 22
3% oy 32

A typical computation for these derivatives is presented in tables I
and II.

The second-order partial derivative of p with respect to y is
obtained again from equation (12):

1 sz 2-1v {9p a 1 - azwz a?.w <8WZ)2 < BWY)Z
P2 2 - z Wy 2 \3y ) T\
P ( ) (r-1) (HV_W;) dy? dy ¥ ¥

(23)

Third and higher order y-derivetives, if required, cen be obtained
in a similar manner. The complete variation of any fluid property aq
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across the channel can then be expressed by a Teaylor's series in (y-ym)
from the various derivatives at the given streamline, such as the mean
streamline

RN
a(y) = ap + (3-¥p) ( %%)m + (y;{m) ( :y‘zl) +
m

3
(¥-¥) ( aSq) . (Y‘Ym)‘g:(Béq) .. (24)
m m

3! 3 4! 4
ay dy
Determination of Blade Profile

The blade profile can be obtained by a consideration of mass flow.
At the chosen stations, mass flow across a constant z line from T
to y is computed as a function of y according to the following equa-
tion:

M= oW, dy (25)

The variations of mass flow M and the magnitude of resultant velocity
W at each station are plotted against y (£fig. 2). Because the con-
dition on the suction surface is more critical than that on the pressure
surface, the blade shape on the suction side is determined first. From
the plot of mass flow against Yy, &a number of ys's are chosen for a

number of mass flows in the neighborhood of one-helf the inlet mass
flow, thus obtaining a number of suction surfaces.: The corresponding
velocities on the suction surfaces are read from the velocity plots
(fig. 2). The one with the best velocity distribution is then chosen.
After the suction surface is selected, the pressure surface and its
velocity are determined in a similar manner by the total mass-flow
requirement. If the shape or thickmess of the blade or the velocity

. distribution on the blade obtained is not guite the one desired, the
shape of and the flow on the mean streamline can be modified accordingly
and the process repeated. Because each case takes a relatively small
amount of computation, this modification is practical. Systematic
building up of families of blades for various applications is also not

difficult.

The accuracy of the blade coordinates obtained depends mainly on
the accuracy of series representation and the accuracy to which the
partial derivations are evaluated. For high-solidity blades, such as
those investigated in reference 13, the first three terms in the series

2223
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will give sufficient accuracy. For low-solidity blades, more terms may
be required. It may be noted that accurate representation of the flow
variation by the series is difficult to achieve in the neighborhood very
close to the leading and trailing edges; but from & practical point of
view it is satisfactory to fair in the nose and the tail according to
some standard shape after the blade coordinates are obtained up to a
short distance away from these regions.

The spplication of this design method will be greatly aided by the
availgbility of detailed flow variations in typicael bladings such as
those given in references 13 and 16. If & typical solution of the type
of blading to be designed is not available, either a direct problem may
be solved first, or even better, the accuracy of the inverse solution
can be ascertained in the manner described in the following section.

Method of Checking Solution

The inverse solution obtained by this method can be very conven-
lently checked and improved, if necessary, by the relaxation method
utilizing the fluid state obtained in the solution. Inasmuch as the
velocities are available in the solution, the equation for irrotational
absolute flow (equation (A9) of reference 13) is now written as

o) 0 3 3
SS% + S;% + (Wy 5% - W, 5%) =0 (26)

The finite-difference form of equation (26) 1s then

..21i 4 21i . x i 1i 5 ii:lik
B - =
% 2’3 v k=0 et [(Wy) JZO i ° (2 k=0 ok ° °
(27)

where the same notation used in reference 13 is employed. A grid
system is obtained by retaining the same z-stations used in the inverse
solution and dividing the pitch distance into an appropriate number of
divisions. The values of VY, W, and p are most conveniently obtained
by reading off the plots of integrated mass flow M, W, and p at
each of the z-stations. The differentiation coefficients B's for
equally spaced grid points as given in reference 17 can be applied
throughout the domain for the present purpose by using the function
values which are inside the blade but at equal spacing from the points
in the channel (the first and last rows in tables III and IV). If the
residuals obtained according to equation (27) require negligible change
in Y, the solution is entirely satisfactory. If the residuals are
large enough to necessitate one cycle of relaxation, the net effect
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may be a slight change in the specified mean streamline flow and in the
velocity distribution on the resultant blade. TIf the residuals are so
large as to warrant a few cycles of relaxation, the flow variation for
this type of blading is established, which makes the design of other
similar bladings very simple. In general, for problems in which some
knowledge of the flow is available, no relaxation should be necessary
except, perhaps, near the nose and tail when accurate detailed velocity
distribution in these regions is desired.

Special Case of Incompressible Flow

When the density is constant, the channel width ratio P/(P—t) has
a relation to Wz,m similar to the relation it has to (pwz)m in the

compressible case (reference 13). A number of values of W, are there-
fore prescribed at a number of chosen stations along the mean streamline
to lead to a desirable thickness distribution of the blade. The solu-
tion of the incompressible problem continues in generally the same
manner ag it did for the compressible case with considerable simplifi-
cation in the series terms and the integration process. In the incom-
Pressible case, of course, equations (12), (15), and (23) relating p
and the velocities are unnecessary.

The first- and second-order derivatives expressed by equations (13),
(14), (21), and (22) for the compressible case are simplified to:

M. aw, aw
s-—yy = <ta.n B EX - a-z—z) cos® B (28)
oW aw aw
B_}TZ' = EZ—-"-r + tan B -d—Z-E> cos® B (29)
% oW oW
y a My a [N, 2
2 [tan  &(59 - E'(sy—ﬂ cos” P (30)
and.
2 2
oW oW, oW
—§E=§z‘§ - tan B ——21) (31)
3y oy

for the incompressible case. The equetion for obtaining mass flow

¥
becomes M = pj W, dy.

Ym

2223
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I1lustrative Examples

The procedure outlined in the preceding sections has been applied
to the design of several highly cambered thick turbine blades for either
compressible or incompressible flow.

First and second examples. - In the first example, the shape of the
mean streamline and the variation of axisl velocity obtained in the
incompressible solution of the blade given in reference 13 are taken
as the specified values in order to determine whether the original
blade will be reproduced. The shape of the mean streamline is shown in
figure 1 and the thickness distribution of the blade is shown in fig-
ure 3. As a further check of the method, the z-stations chosen in this
calculation correspond to every other z-station used in reference 13,
so that the velocities obtained along these stations can also be com-
pared with the solutions obtained in reference 13. The given quantities
were inlet angle By, 41° 18'; exit angle B,, -52° 57'; axial chord

L, 1.5 inches; and pitch P, 1.017 inches.

The same data are used in the second example in which a compres-
sible solution for en inlet Mach number of 0.42 is obtained. The axial-
velocity variation on the mean streamline used in the first example is
now teken as the specific-mass-flow variation on the mean streamline.
This example is presented mainly to illustrate the difference in incom-
pressible and compressible solutions for the same mean streamline shape
and the same ratio of specific mass flow.

The complete computation for the flow on the mean streamline and
the determination of the first- and second-order derivatives of ‘WZ,

W&, and p 1in the pitch direction at the mean streamline for these

two cases is given in tables I and II. Only three terms in the series
are used because the direct solutions given in reference 13 indicate
that they will be sufficient for engineering accuracy. The central-
point fourth-degree differentiation formuila is-used at the regular

stations 23 to z16' Because the first and last stations inside the

channel employed in reference 13 are not close enough to the leading

and trailing edges, respectively, two extra points are computed at
stations 6.75 and 12.25 by the use of the unequal interval differen-
tiation formula given in reference 18. These two points are so desig-
nated because they are located at a distance of a quarter of the regular
spacing away from stations 7 and 12, respectively. This combination is
unnecessary for other cases.

The velocities and the densities used in the calculation are non-
dimensionalized as follows:
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W=
z Wz,i
W
W*= y
y Wz,i
* P
pr=—
Py

The mass flow M‘, being divided by psW, 45 has the dimension of
length: ?

® _ M

piwz,i

M

For the compressible case, the ratio of H, to Wz 12 is equal
to 25.78, which is the value used in the comstruction of the two density
graphs involved in the calculation, the reduced versions of which are
shown in figures 4 and 5.

The values in columns 2, 5, 8, 9, 12, and 13 of table I and 7, 8,
13, 14, 22, and 23 of table II are used. to compute the variation of W
and. W& in the pitch direction by the power series. The calculation

of density follows directly as does the integration across the channel
for mass flow, the mass flow being determined numerically. Because the
specific mass flow pW, was made dimensionless with its inlet value,

the numerical velue for the mass flow is equal to the pitch, the height
being considered unity. This indicates that the integration for mass
flow along the pitch direction starting at the mean streamline was con-
sidered to be complete in either the plus or mipnus direction when a
value equal to one-half the pitch distance or one-half the total mass
flow was reached. Thus the channel flow and the blade coordinates
were obteined. This calculation at one station, 10, is shown in
tables III and IV for the two cases, respectively.

The blade profile obtained by interpolating Vg and yb for

one-half of the inlet mass~flow value is shown in figure 6. Because of
the same mean streamline shape and the same variation of specific mass
flow on the mean streamline prescribed in the incompressible and com-
pressible cases, the blades obtained for these two cases look quite
similar except that the compressible one is somewhet thicker and the
suction surface of the compressible solution is situated farther from
the given mean streamline; these results are consistent with the direct
solutions given in reference 13. The velocities obtained in the two
cases (fig. 7), however, are quite different. Those in the compressible
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solution are, in general, higher than those in the incompressible case,
principally because of the high velocity on the mean streamline result-
ing from the use of the same (pWZ)m and a decreasing p along the

mean streamline in the compressible case.

The blade coordinates obtained in the incompressible solution are
compared with those of the original blade in figure 8. The velocities
at the six regular stations in the channel are compared (figs. 9 to 11)
with the velues obtained in the relaxation solution of the original
blade reported in reference 13. These four figures show that, in
general, the present solution is satisfactory. The relatively large
differences near the leading and trailing edges are partly due to the
inaccuracy in the second-degree polynomial approximation in the present
calculation and partly due to the inaccuracy of the numerical solution
obtained in reference 13 caused by the relatively coarse grid used in
these regions.

As a check of the consistency of the solution, an integration of
the velocity along the blade profile obtained in the same example was
made and compared with the circulation value computed from the inlet
and exit tangential velocities and the pitch. The two are in agreement
within 1 percent.

Third end fourth examples. - In the previous two examples, the mean
streamlines and specific-mass-flow distributions prescribed were not
entirely arbitrary, having been obtained from the results of a direct
problem for incompressible flow. The possibility of obtaining an
unrealistic blade shape was, for this reason, largely eliminated. Con-
sequently, in order to give the method a still more rigorous test, the
thickness distribution (fig. 12) and meen blade line (fig. 13) for the
hub section of an experimental cooled turbine blade were arbitrarily
chosen from which a mean streamline and specific mass flow were estima-
ted by means discussed in the section "General Description of Method."

In addition to the mean blade line and thickness distribution, the
following data were used: inlet Mach number, 0.42; inlet angle, 36.2°;
exit angle, 42.7°; axial chord, 1.8 inches; and pitch, 1.176 inches.
The mean blade line was faired into the inlet and exit directions
(fig. 14) with modification to obtain a mean streamline according to
the information obtained for a typicel turbine blade in reference 13
(see fig. 8). The thickness distribution was used to obtain the
specific-mass~-flow distribution along the mean streamline (dashed curve
in fig. 15) according to results obtained in reference 13. After the
flow on the mean streamline was calculated, it was then extended out
from the mean streamline across the channel by means of power series as
before.

Both' compressible and incompressible solutions were completed, the
incompressible case being considered first because of its relative




16 NACA TN 2455

simplicity. The results of the incompressible case served as a guide to
obtaining better prescribed values for the compressible case. The blade -
obtained in the incompressible solution has a slightly higher thickness
distribution than was wanted and, because results obtained in the first
two examples indicate that the compressible blade will be thicker than
the incompressible for the same specific-mass—flow distribution, this
distribution was depressed by a linear proportioning (fig. 15) in order
to obtain better starting values for the compressible case and conse-
quently a thinner blade (fig. 14). The same mean streamline numerically
smoothed. to give small fourth differences was used. in both cases.

2223

As a check of the accuracy of the last solution, a grid having the
same spacing in the z-direction used in the inverse sgolution (0.18) and
a grid spacing of 0.147 in the y-direction is chosen, and the residuals
at the grid points are computed according to equation (27) using the
central point second-degree differentiation formula. As shown in
table V, the residuals are rather small when they are compared with the
magnitude of the coefficient at the points (-154.3). As an indication
of the percentage error in the velocity, these residuals are first
divided by -154.3, resulting in an approximete change in the V¥ value
at each point. Then the probable error in BW/By or pWZ is calcula- .
ted. The result is shown in table VI, which indicates that the solution
obtained is sufficiently accurate for ordinary purposes.

DESIGNING BLADES FOR COMPRESSIBLE FLOW ALONG ARBITRARY
STREAM FILAMENT CF REVOLUTION
Basic Relations

The blade design method presented in the section "Designing Blades
for Compressible Flow in Plane or on Cylindrical Surface" can be very
easily extended to the more general case of flow along an arbitrary
stream filsment of revolution having a varying normal thickness
(fig. 16). When only an average value in the stream filament of revolu-
tlon, as represented by the flow on the mean stream surface of revolu-
tion described by a set of orthogonal coordinates 1 and ® (fig. 16),
is considered, the equation of continuity for steady relative flow and
the equation of irrotetional absolute flow are given in reference 13 as

follows:

B(TpWZr) BCTQEP)
+ =0
o1 o

(1)

®_1_1, 9 + 20 sin 0= 0 (2")
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where primes in equation numbers indicate equations similar to those of
the cylindrical case,

When the fluid flow along a streamline S(1,%) = O on the mean
surface of revolution is considered, it is convenient to write any
quantity @ on S as a function of 1 only. Then the total deriva-
tive of q with respect to 1, following the streamline, is

dg _ 9q , 0q dp _ g Bq_]__w_g_aq tan B Oq .
TR TwO -t ®rW, oLt T o9 (")
when
W
ta.nB:%:r%%e

When the preceding relation is used, the continuity and irrotationality
conditions can be written as

d(TpW,r) d(ToW,) O(TpW)
1 P¥y pQ) 1
—g7 — -ten B % + 5% =0 (10")
and.
aw, OW. oW, W
® 11 tan B ® _ 1
A T acp+(r+2c1)>sin0—0 (1)

The variation of density throughout the flow region, in genersal,
is obtained from the velocity by using the following equation:

L
T-1

o I+%a>2r2;%wz
o= - B (12')

In order to obtain the density on the starting (mean) streamline, equa-
tion (12') is written in the following form (compaere with equation (7a)
of reference 13);

-1
%= (1 - %) (12a')

where
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2
-1

I-F NH—’

zz-
Z=p"'2< >
_ il

2 1 22\ 71
= (p*W,* sec B) (Wl’i>(1+§mr>
2 by by

Once the general relation between 2% and ¢ is available, the evalua-
tion of p* for certain given values of p*Wz* sec B along the chosen

(mean) streamline is made simple if auxiliary tables or graphs giving

_ 2 _rHl
T-1 -1
I+—]=c1)2r2 W 2 I+-!'~(1>2r2
2 1,1 2
_—hi and 3 h:L }li as functions of r

are first obtained.

The determination of the flow along the starting (meean) streamline
(£ig. 17) proceeds very much the same as in the case of plane flow or
flow on a cylindrical surface. The shape of the streamline gives
sec B. The variation of p"‘W.L* is obtained from the blade-thickness
variation along the mean surface of revolution as follows: If the
value of sz on the mean streamline represents its average value in

the circumferential direction

T(oWy)p (P-t) = (TEWyP)4 (32)
But
Py 7y
FoT (33)
hence
T(pWy)p T P (54)

(TeWyr);  P-%

Although there is always some deviation from this simple relation,
especially around the leading and trailing edges, a relation between the
two terms in equation (34) similar to that between (p*w,*), and

2223
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P/(P-t) in the previous cylindrical case can be expected. Then, from
T"'(p"‘\;'lz'")m r* (p*WZ*)m is calculated and combined with sec B from

which pm* is obtained by equation (12a'). After pm* is determined

W, o end then ¥ are easily calculated.
J

)

ch,m
Variation of Fluid State in Pitch Direction

The first-order partial derivatives of WZ B ch, and p with

respect to ® are readily obtained from equations (10'), (11'), and
(12') as: '

oW aw a( ToW, )
=|:rd—7'59+ta’n’3 L +(ch+ 2ar) sin O'JCOSZB (13')

TP di
s
)

aw a(TpW,r)
- I T i a
tan B [r Tt (ch + 2or) sin 0] = ) }cos B

o~

g

n
—

(147)

oI+
8¢

N < A, Bw>
o (T—l)(I+lm2r2_%w2> "5 * Vo se (15)
2

In a manner similar to that of the case of plane or cylindrical
flow -the second-order partial derivatives of WZ 5 ch, _and p are
obtained as follows: )

52'-— szgp 3 —?STI: Tr<p6-$+wzﬁ +

o®
g MW oW 5
tan B ragg+smo£ cos” B (217)
2
3%, g 9 3%, 3 '
gaz_=raz—’§%—tanﬁ-ﬁ+sin0% (221)
ife=ﬂ<ao>z_
P af P o
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After the variation of fluid state in the circumferential direction
is determined, the mess flow across a constant 1 1line from CP to @
is computed by

[\o]
M= T pW, d® (25')
ch

from which the blade coordinates are determined as in the previous case.
If checking is desired, the following equations are to be used:

Ay (sincr 81n'l'>8\|! 3

_1___\[:_ < %0 _ %1 3 20p sin o = 0
5.2 r o Ju T Z3g T\ & T T opt Hesing )=
(26")

iEB;__l_(si;lo_alnT) lBi]\IJ'j Z ok v

30

n i n
ilEIcpi 3:20#835 p‘-j —(?—) kg(/:#i pk-l- 2w(p sin c)i

Il
o

(27')

where the same notation used in reference 13 is employed.

SUMMARY (OF RESULTS

A rapid method for designing turbomachine blades of a given turning
and a desirable blade-thickness distribution for a compressible non-
viscous fluid flow along an arbitrary stream filament of revolution is
presented. The method utilizes the guiding effects of the blade shape
on the mean streamline shape and of the blade thickness on the specific
mass flow along the mean streamline. After the flow on the mean stream-
line is determined, the extension of the solution from the mean stream-
line to the blade surfaces is accomplished by the use of a power series.
A nunmber of blade profiles are obtainable for the total mass-flow
requirement, and one is chosen for the best velocity distribution on the
blade. The results obtained in the solution can be used for a direct
check on the accuracy of series approximation and, also, for the more
accurate determination of the velocity distribution along the leading
and trailing edges of the blade.
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The method is illustrated with the design of several cascades of
airfoils. In each case either some indication of the accuracy of the
solution is given or the relation between the incompressible and com-
Pressible problems are shown. In the first case, the results obtained
in an incompressible direct solution were used as prescribed values for
the inverse problem to show that the original blade can be relatively
eagily reproduced with adequate accuracy. The variation of the velocity
and its components across the channel was shown to compare favorably
with those obtained in the direct solution and an integration around
the blade for the circulation checked with that obtained from inlet and
exit values within 1 percent. In the second problem, the same mean
streamline and specific-mass-flow Gistribution along it were used; but
this time the density was allowed to vary as in compressible flow and a
comparison was made between the blades obtained in the first two cases.
In the third and last problem, an arbitrary mean streamline and specific-
mags-flow distribution were chosen, the blade obtained, and the solution
checked by calculation of the residuals as in a direct relaxastion solu-
tion. Because the residuals were small the solution was considered to
be reasongbly accurate. A computation designed to give some indication
of the accuracy of the velocities by dividing the derivative of the
error in the stream function ¥ by the derivative of ¥  itself showed
them to be accurate generally within 1 percent except near the blade
boundaries where an end-point formula was necessarily used to obtain
derivatives.

Because the surface of revolution, on which the blades are located,
is completely arbitrary, the method can be applied to axial-flow, radial-
flow, and mixed-flow turbomachines. The variation in the normsal
distance between the stream surfaces of revolution can be taken inmto
account, thus incorporating into the design the principal effect of
three-dimensional flow. The method is readily applied to the design of
channels on a plane and on a general surface of revolution.

Lewis Flight Propulsion ILaboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, May 31, 1951.
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TABLE I - QCMEUTATION OF FLOW O MEAN ETHBAMLINE AND FIRST- AND SECOMD-ORTER y-IERTVATIVES AT THE MEAN STHEAMLINE OF FIROT FEXAMTIE
(TROMPRESSIELE FLOW)

[ai] [i:) ® (L) [19] ) h (8) (9) g 1] 0z ()
aw: a vy oW > W (B 2 kel
2 - z,m m d [Nzl d.
Btatian z Ym I,u | ten By sect Pm| W1 dz dx (W)n (ay)- da,)n dz\3y ayz az)m
+N@ D -6 B -
P e oo| ¥ | £ egued-e P | P |20-Qgap
@
b3 =1.4084 | =0,3728 [ 1,0000 | mmmmmmem Jommmmnn mmcmmce e e oo - = B
2 ~1.1541 |- 1484 | 1.0000 [ mwrmmman | cnamn S B TR - |- - | mm———— = femm———
3 - 8599 L0740 | 2,0000 | 0.89108 |1,79408 | .BS108 |-------= | —cmrmans |- B N L
4 ~ 6456 .5060 | ,8980 | .933B5 |1.87627 eOBAER | mmmmmmmm | cmmemeaa e | mmmammee | —————— ——m—— T Ly
5 - ,3914 .B5L7 | 8771 | 1.08618 | 2.07387 | l.01245 + 25487 LAO953 | 0.32479 | 0.08L87 |r=mmmmmm | motmmemoes [ o ————
8 ~ 1371 .8178 | 1.1500 .93615 |1.47658 | 1.07867 | 1,01262 |- .39092 .28682 | - 73465
8.75 L0585 | .9884 | 1.3659 .65822 | 1,4%082 69835 | 1.08548 | -1.87726 |- .674%0 | -1.52410 | -5.42825 | 0.6593% | 4,09628 |-2,02974
7 L1171 | 1.0070 | 1.430 | .B4200 |1.29474 . T7889 .83601 | -1.78538 | -1.01282 | -1,58636 | -5.49485 43025 | 4.42423 |-1.97168
8 L3714 | 1,0922 | 1.5410 | 15759 |1.02485 | .24205 LBOBG6 | -2.15%83 | -2,07285 | - .52015 |-1.74154 | 4,16951 | 2,.34050 | 3.80067
8 .6266 | 1,0805 | 1.5520 [~ ,17470 |1.,08058 |- ,B7113 | -~ 08784 | -1.95591 |-1,86569 41541 | 2,12073 | 3.07870 | -2,57882 | 2.62218
10 .8789 | 1,0050 | 1.5000 |- .48718 (1,25734 |- 73077 |~ .36054 | -1,65736 | -1,18750 | 543894 | B,61580 | 1,B07B4 | -2,8%185 |~ ,17213
11 1.134) | .8424 [1.5710 |- .80665 |1.66068 |-1,10682 |~ 65189 | -1.31032 |- .48497 | 1.02W8 | 2.80027 | - ,55602 | -1.30950 |-1.61153
12 1.3864 6938 | 1.1950 |-1.15678 |2.3558% |-1.57886 | - .T3497 |- .70788 .08081 | .88491 | 1.48324 | -2.86857 88444 |-1.87E5L
12.26 | 1.4519 JB170 | 1.1450 | -1.24560 | 2.6B152 |-1.42372 ;- .78104 |- .57870 | .14%50 | .B7980 | 1.12801 | -1.97230 | .52088 |-1.32434
13 1.6428 L2820 | 1.0242 | -1.42%55 | 3,02844 |-1.48798 | - .48772 LOB181 | 24042 [ - 12547 - [
14 1.8989 |- .1119 | .9680 |-1.43537 |35.05455 [-1.35750 | - .00344 25138 .0802%7 | ~ 10862 - —-— |-
15 B, 1511 { - 4800 | .8980 |-L,36644 | 2,868716 [~L.BEB7L | ===rmr== |ommmmmcn | o | e [ e | memmmen | e femeea
15 28,4054 |~ ,B0BO | 1,0000 | -1,54867 | 2.81878 |-1,34897 | ======== | commmmm e [ —m——— B T B I T T R P
17 £.6686 | =1.1458 | 1.0000 | =m=mman N (VRN (NDR DI [ UV |POVEYGUVI [NREROMUUVIIOU [PV, POV, O -
13 8.9130 | ~1,4826 | L.0000 |~rammmee | —cemm S [T iy [P S— | mm——— —————— ] m——— - -—
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TABLE IT - COMPUTATICN (F FLOW COF MEAN BTHEAMLINE AND FIBST~ AND EEXCOND-OEDER

@ ® ® ® ® ® [3) ® ® 2 b &)
Btatio| & Yo |(p*WEn | ten By |sec? p, [(p%sec BB o8 L ¥ d:f-'m e (Z:":)n. % éd_%:_)_!;
Dt | P |[m| 2 |00 | @ ® L |90
ig, 4 @ dz ds ®
1 |-1.4084 |-0.5728 | 10000 - R S AR D R
2 [-1.1541 |~ .1484 | 1.0000 S U . e | = S IS I
5 |-.s099| .0740| 1.0000 ) 0.89108 | 1.78402 1.794 0.8880 | 1,00110 | 0.89808 | ccmommee | ccccoce | commeee | maeee -
4 |- .e48 | .3080| .opeo | .emsee |1.a7827 1.872 L0042 | 1.0085 | 04008 | wemwmemn | meemmcce |comeeee | cmmmeeee
6 |-.s014| .8527| .8771| 1.03618 |2.07367 1.880 .9875 | .saos7 | 1.02587 | o.51ms | L2547 |1.01288|  o.o5780
8 |- .l%71| .8178 | 1.1500 | ,83615 |1.87638 3.482 .9528 | 1.20697 | 1.12990 | - .20567 | 1.01252 | 1.04954 | 1.06288
8.75 | .0S85 | .9684 | 1.%850 | .65622 | 1.43082 2,669 .0581 |1.45603 | .95548 | -1.78475 | 1.08548 |1.08898| 1.16710
7 J1071 | 1.0070 | 1.4310 | .54290 | 1.29474 2,861 .0%97 |1.B2285 | .8pe74 | -1.86756 |  .63661 |1.06417 . 88061
8 %714 | 1.0828 | 1.B410 | .15760 | 1.02488 2,454 .9564 |1.81125 | .25302 | -2.28571 |  .20258 | 1.04558 L1179
8 6288 | 1.0805 | 1.5520 |- .17470 | 1.0%052 2.482 .9528 | 1.82888 |- .26457 | -2.05532 | - .08784 |1.04854 | - .06Z19
10 .878% | 1.0050 | 1.5000 |- .46718 [1.23734 2.784 .9887 | 1.61516 | - .78887 | -1.87747 | - .36054 |1.07677 | - .388E2
1 1.1341 | .8424 | 1.3720 |- ,50665 | 1.65088 3.105 .9000 |1.52555 | -1.22879 | -1.61585 | - .63188 |2.11111 | - .70221
12 1.3884 | .5938 | 1.19%0 |.1.1657a | 2.35%83 5.324 .877% | 1.55886 | -1.57169 | - .62625 | - .75497 |1.13086 | - .B5778
12.25 | L4518 | .E70 | 1.1430 | -1.24560 | 2.58152 3,353 .678% | 1.50436 | -1.62470 | - .63878 | - .76104 |1.14118 | - .88847
13 1.6428 | .2620 | 1.0242 | -1.42%55 | 5.08644 5,175 .8927 | L.147%1 | -1.6338% | .25788 | - .487T2 |1.12020| - .5E304
" 1,8969 |- .1119 | 9680 [-L1.43357 | 5.06455 2,858 0822 | 1,04968 | ~1.60456 | .56881 | - .00B44 [1.08438 | - .0OS60
15 2.151) |- .4800 | .5980 |-1.36544 |2.86718 2.856 .9225 | 1.08184 | «1.47827 | ceemmmne | —comem- -
15 2.4064 | - .8090 | 1.0000 |-1.54887 | 2.81872 2.820 .9257 | 1.08026 | -1.4572¢ - -
17 2.€598 | -1.1458 | 1.0000 |-memeemn | cee - —— .- mmm——
18 £.9139 | -1.4828 | 1.0000 — o - NS
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Y-DERIVATIVES A™ THE MEAW STREAMLINE GF SECOND EXAMFLE {CQMPRESSIBLE FLOW)
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G @ ) () %) ] [ & | i b €2 €3
73 WA 73 W Portim of Partion of / 2p™ Portion of egnation (21) £ ABHE / EWI
[ — ) S L) . —_— —t
o h |\ /e | eamtion (15) | eqwticn (lb‘i \S7/n ka,"-’ }. Kayz

RPR:Q |- R+@K 2 [@+@2] d a LA+ QR
* + 2 - -
® ® 5) - 10,52 @R +OB| : - PD-6 o) 0 -06
0.37921 0.13504 0.8072b -8.50585 ~0,05121 0,32580 |==mee— — ] m—————— ——————— ——————— e ——
%7261 | - .Tp386 - 34002 -9.7653L 05482 e e - T P (SVOS (R N [P IO
- .T1876 | -1.68746 -2.45778 -9.70541 .e5118 | - .30867 |-4.34m9 | 0.88130 4,92447 5.98182 -1.9%65
_=1.06903 ~1. 47089 -2,67250 -9.711%0 127518 - 58550 ~4,40125 + 30906 &, 97157 4.21565 ~1,87965
-2,18776 | - .B5014 -5.52228 ~8,77988 .56018 | -1.58165 |-1.62207 | 4.42530 1.77463 2.49118 4.038538
-1.97882 45789 ~3.18968 -9,76515 352865 | -1.35533 1.78075 | S.54414 -1.84098 -2,44188 2.91764
-1.36448 1.05297 -2.81623 -5.6664% L2954 | - .79684 2.41248 | 1.50541 -2.683869 -2,BE758 ' L1715
- .B3573 1.21505 -2, 215%0 -9. 54501 25207 | - .Z18B4 2.05021 | ~ 62354 -2.57613 -1.29481 -1..86780

06123 76695 - 38451 -9.4k012 JLOLED L LOB41 1.14733 | -2.84075 ~1,52182 .888B3 -1.87854

17382 65221 - 73012 -9. 44250 0773 25208 78435 | -2,17308 -~ 81861 65000 ~1.56342

. 53183 .06185 . 26406 -9.51526 08776 52788 mmmmmmme | mmsesmcme | mmmemame | sesaa. -

1231 | - .17 .35701 -9.63991 | - .0=704 07508 cmmivoe | nemsemen | mmmmmmme | ammmmeee
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TABLE III - COMPUTATION ( VELOCIFY CRPOMEMTE AKD MABS FLOW AT OEATICN 1O OF 'YHE PIRSY NXAMPIX (IMOCMFHEMSIBIE FLOW)

[F10 = 0.8789; yy = 1.0050; &yp = 0.1553%; 4y, --o.wass]

gta- @) [ ® ® 3% @ @ @ [T Q © ) b
S ENEC-2a o (N N B P T 8 T B e Py
j dbtainad
vu + nlay) niy n_: (ay) e O+ OO + D> B+ EP+ DD m m ;?.to,soes
wy| 16383 | 083333 | 0,16222 | mmome- | moememn |2 | 0.83688 . ~0.83010 1.04785 | 0.88653 | =-nn-—
My 1.6080 ADO00 | 08000 | mcumem | mmmmecn |oemee | 1.00725 [meeeon | cmeee cmmenen |- LE787S 1.18z18 .50236 | 1.41120
ehy,| LTl JEE86T | LOSB8 | emmmem | mmmmem | memmnn | LATASA [emeceeee | cmeien [emcienen [ - LB787B 1.30885 225600 [ ——en
| Laases 15385 | 00838 [ ~men | mmmomn | oomens 1.88800  f--meee Y [T — - 63000 147867 | —nemem | e
Y| 10080 |ceemeeen —-m---w | 1.5000 | -1.187801 -0.17215 |  1.50000  [-0.73077 |o0.B43%4 |-B.0mE5 | - .73077 1.86858 | —mmeonm | memeee-
&ys| 9057 |- 08933 | .oo433 1.61810 - 53040 182856 | mememme | moene-
2y,  .6083 |- .1s887 | .one73 175461 - 97418 198938 | -.3@d | e
sy, 100 |- Leseoo | Lowdo . 1.84921 - -1.13780 2A71ZL | -.e09l| 70808
Uy, 6077 |- 39738 | 07884 |eememm | —oo |t | 1.882R) oo | ccaoe [coeeee | L3203 £.37015 | -.88873 | ocmoo-
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TARIE IV - CONPUPATION OF YELOOITY COMPOSEMNES AND HASH FLOW AT GPATICH 10 OF TEE SEOOND IXAHPLE (OCHPREZIIELE YLOW)

|—‘l° - 0.6739) ¥y = 1.0080; Ay, = 0.13853) Ay, -009933]

i @ ( @ - ® a%) a?w @ @ @ ® (E] 0 e 18 @ ©
R e - g 1 PR I I AP P B
re s alie) | wy | (a0 D+ OO +OO 5+ @0+ 00 [T |56 5 |08 Pan® ™ | 0,000
@y, 1.5383 | 0.53388 | 0.148%% .a1283 o0.su65 | 111862 | Lozrz |o.omas | o.esers | omoeee
2y| 14050 .40000 | 08000 108554 - 999 | 1.2s883 | l.om18 [L.osall | e2arz | 1.30070
aAy,| 1.8717 (26887 | .o5EEE 1. 25788 - .08 | 13760 | .90 |Ll.2es27 | 36788 | commee
Ay, 1.1%3 azees | .omes Loamal -.672%0 | 1.58459 | .0636 |1.38888 | oo | aooee
vo | 1.0080 | cccemne | me-me— |1.61816 | 1.36¢48 [0.17725 | 1.cams | -0.78607 |Ll.08207 |-2.03783 | - 78887 179664 | 9285 [1.49968 | comaes | oo
ay,| .sosr | - .omems| 00483 | ——ul| cmmeen | - L7187 - - 90569 1.97196 | L8913 |1.57188 | —orem | e
eay] .5os3 | - .ese7 | .cue7s 1.88974 1.06362 | 218570 | 8603 | L.6EB74 | - E1EE | meeeem
sy 7070 | - .zesto | oo 2.02984 123064 | 25759 | @76 168043 | -.47400 | .eo879
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TABLE V - RESIDUALS OBTAINED IN COMPRESSIBLE SOLUTION OF THIRD EXAMPLE

y~Z| o0.18 0.36 0.54 0.72 0.90 1.08 1.26 l.44 1.62 1.80

1.176 0.2093| 0.7716|-0.0361|~-0.2726| 0.0989
1.029f-1.2212| - .1610| .3052| .3007 .1913| .1327| 0.0752(-0.4316{-0.0797
.882]-1.0128| - .2084| .1641| .0091| .1671] .0279|- .3206| .2230[- .2538|~0.2408
.735|- .3648| .2068|- .0093|- .1896|- .1197|- .1168|- .2642j- .1612|- .1942| .3271
.588| .1086 .2642| .0211}- .0233| .2706| .0586| .5123| .1244| .1099 4335
.441}- .3708]|- .3869 .6299(- .1013|- .1494| .0229|- .0189)- .9797 .0698] .2336

.294]- .5373 - .0003| .2631|- .2363|- .3507
2147 - .4918| .0368
o L3491

,

TABLE VI - ESTIMATED PERCERTAGE ERROR IN 3¢/dy or pWg

2| 0.18 0.36 0.54 0.72 0.90 1.08 1.26 1.44 1.62 1.80

1.176 -0.01005|-0.01217] ©.01223| 0.01342] 0.00119
1.029|-0.00022( - .00771}- .01115 .00081] .00779(- .00128| 0.01148} 0.02231 {-0.00597
.882) .01599 .00644] - .00541)- .00830|- .00524}- .00382}- .00599 .00498 |- .00226| 0.01664
.735] .01997 .00785| - .00228|- .Q0051| .00162] .00049 .01381{~ .00177 .0069L| .01366
.588| - .00010} - .00952 .00941} .00128{- .00043| .00210( .00393(- .01441( .00496(- .00190
.441)- .00107)- .01544| .01228)- .00268|- .01121}|- .00199i- .00795 00236 |- .00650|- .01598

.294)- .00015 .00437 .04036 |~ .01052|- .00394
147 - .00432| .01379
0 .00555
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Flgure 1. - Hean streamline, inlet and exit angles, and z-staticns.
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Flgure 2. - Determination of blade coordinate and velocity on blade.
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Pigure 3. - Blade-thickness distribution.
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Figure 4. - Variation of p* with (p*Wg sec B)2 in accordance
with equation (12b).
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equation (12).
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Figure 6. - Inverse solutions for compressible and incompressible flows.
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Figure 8. - Comparison of incompressible solution with
original blade.
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Figure 9. - Comparison of axial veloclties. Vertical lines are stations.
Using scale, read horizomtal distance from station to corresponding
curve to obtain velocity.
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Figure 10. - Comparison of tangential velocities. Vertical lines are stations.
Using scale, read horizontal distance from station to corresponding curve to
obtain velocity.
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Figure 11. - Comparison of resultant velocities. Vertical lines are staticns.
Using scale, read horizontal distance from station to corresponding curve to
obtain velocity.
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Figure 12. - Blade-thickness distribution.
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Filgure 13. -~ Desirable mean blade line and corresponding
blade shaepe.
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Figure 15. - Channel width ratio and specific mass flow along mean stream line used in incompressible and
campressible solutions.
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(d) Applicatlons to axiel-flow, mixed-flow, and radial-flow turbomachines.

Filgure 16. - Flow on arbltrary surface of revolution and stream filament of revolution.
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Figure 17. - Blade section on arbitrary surface of revolution.
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